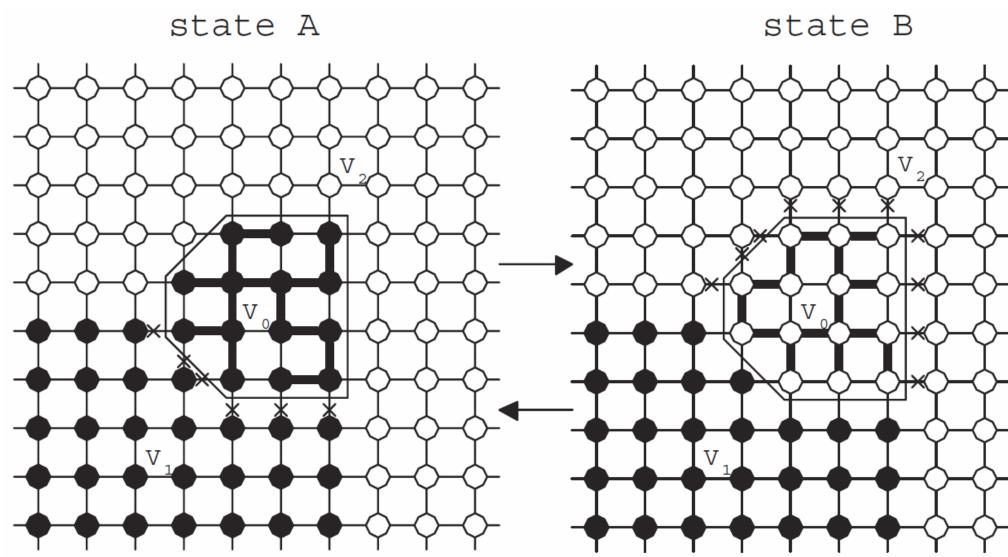


Scalable Motion Segmentation using Swendsen-Wang Cuts Liangjing Ding¹, Anke Meyer-Baese¹, Adrian Barbu² Florida State University, ¹Department of Scientific Computing, ²Department of Statistics

Overview


Task: cluster a set of tracked feature points based on their motions

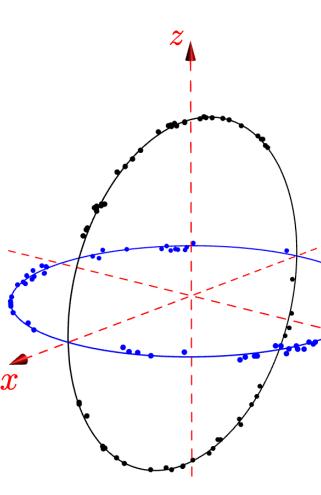
Swendsen-Wang Cuts

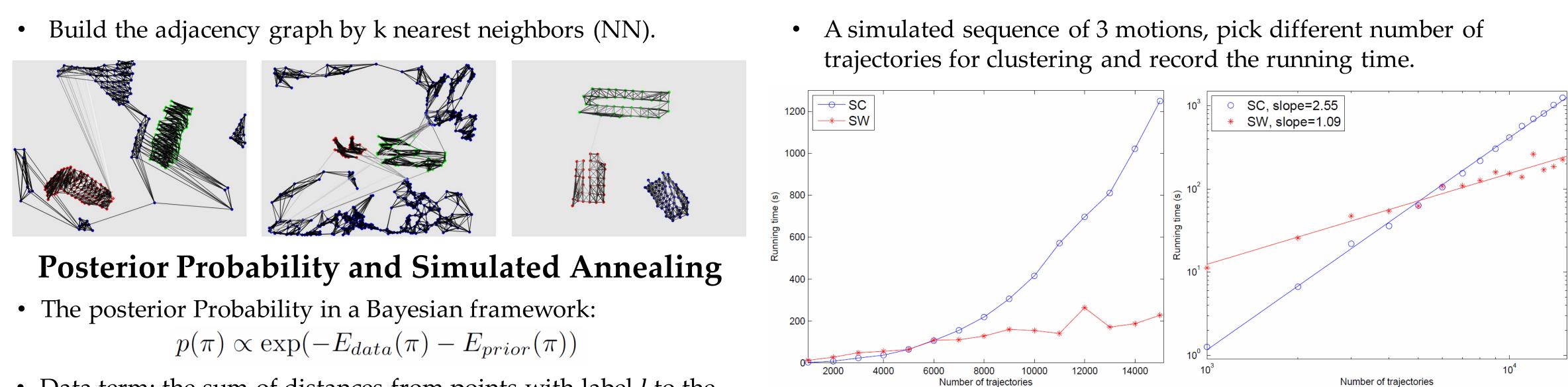
1/2

In Ising and Potts model, the probability for flipping each spin from –1 to +1 is 1/2. Thus the expected number of steps to flip a string of k spins is 2^k for a single site update algorithm.

Swendsen-Wang method:

- 1. Turn edge "on" or "off" probabilistically.
- 2. Select a connected component V_0 of the resulting graph randomly.
- 3. Choose a label for V_0 with uniform probability.


Affinity Measure


- The trajectories of feature points from a rigidly motion reside in an affine subspace of dimension at most 3.
- Affinity based on angular information

$$A_{i,j} = e^{-m\theta_{i,j}/6}$$

where $\theta_{i,i}$ is the angle between two points x_i and x_j and $\overline{\theta}$ is the average.

• Overestimation could only happen at the intersections of subspaces.

- Data term: the sum of distances from points with label *l* to the affine subspace L_l which is fitted in a least square sense.

$$E_{data}(\pi) = \sum_{l=1}^{M} \sum_{i,\pi(i)=l} d(x_i, L_l)$$

• Prior term encourages the points from the same connected components to stay in the same cluster.

$$E_{prior}(\pi) = \sum_{\langle i,j \rangle \in E, \pi(i) \neq \pi(j)} \rho A_{ij}$$

- Simulated annealing: $p(\pi) \rightarrow p(\pi)^{1/T}$.
- A faster annealing schedule:

$$T_i = \frac{T_{\text{end}}}{\log(\frac{i}{N}(e - \exp(\frac{T_{\text{end}}}{T_{\text{start}}})) + \exp(\frac{T_{\text{end}}}{T_{\text{start}}}))}, i = 1, \dots, N^i$$

Full Algorithm

Input: N trajectories (t_1, \ldots, t_N) from M motions **Dimension reduction:** Project the trajectories to a Ddimensional space by truncated SVD, obtaining points $(x_1,\ldots,x_N).$

Compute the affinity matrix A using the proposed measure.

Construct the adjacency graph G as a k-NN graph based on the affinity matrix A.

for r = 1, ..., Q do

for i = 1, ..., T do

1. Calculate the temperature t_i .

2. Run the Swendsen-Wang cuts algorithm and record the final probability p_r .

end for

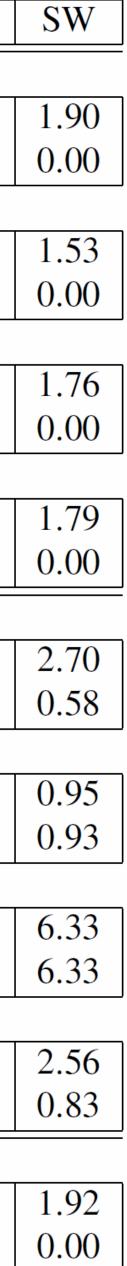
end for

Output: M clusters with the smallest p_r .

Complexity Analysis

• The time complexity of the entire algorithm in terms of *N* trajectories is $O(N^2)$, comparing to $O(N^3)$ of spectral clustering.

Hopkins 155 is an extensive benchmark for testing feature based motion segmentation algorithms.


	Method	ALC	SC	SSC	VC
	Checkerboard (2 motion)				
	Average	1.55	0.85	1.12	0.67
	Median	0.29	0.00	0.00	0.00
	Traffic (2 motion)				
	Average	1.59	0.90	0.02	0.99
	Median	1.17	0.00	0.00	0.22
	Articulated (2 motion)				
	Average	10.70	1.71	0.62	2.94
	Median	0.95	0.00	0.00	0.88
	All (2 motion)				
	Average	2.40	0.94	0.82	0.96
	Median	0.43	0.00	0.00	0.00
	Checkerboard (3 motion)				
	Average	5.20	2.15	2.97	0.74
	Median	0.67	0.47	0.27	0.21
	Traffic (3 motion)				
	Average	7.75	1.35	0.58	1.13
	Median	0.49	0.19	0.00	0.21
	Articulated (3 motion)				
	Average	21.08	4.26	1.42	5.65
	Median	21.08	4.26	0.00	5.65
	All (3 motion)				
	Average	6.69	2.11	2.45	1.10
	Median	0.67	0.37	0.20	0.22
	All sequences combined				
	Average	3.37	1.20	1.24	0.99
	Median	0.49	0.00	0.00	0.00

Clustering a sample sequence.

The misclassification rate.

Although SW performs slightly worse than some state-of-the-art algorithms based on spectral clustering in misclassification rate, it achieves a better scalability for large problems.

