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All early Indian lunar models, from about A.D. 450 – 650, used only one anomaly – the 
variation in speed of the Moon as it circles the zodiac.1 Unlike the Hipparchan model, 
which treated the same anomaly in terms of a single epicycle or its equivalent eccentric 
deferent, the Indian lunar (and solar) models without exception used the concentric 
equant, in which the Earth is at the center of a deferent with radius R = 1 and the center of 
uniform motion is some distance r from that center (see Figure 1). In such a model the 
equation of center q is given by 
 
 sin sinq r α= −  
 
where the mean anomaly α = L – A, L is the Moon’s mean longitude, and A the longitude 
of its apsidal line.2 For the concentric equant the apogee – the direction of slowest motion 
– is in the direction of the line from the earth to the equant point. The quality of the 
predictions of the concentric deferent and the Hipparchan model are essentially 
equivalent. 
 
The Laghumanasam, a short text by Munjala probably written around A.D. 930, gives 
much of the standard Indian planetary model information and appears to be derived from 
Aryabhata’s various texts, written ca. A.D. 500, Brahmagupta’s Brahmasphutasiddhanta, 
ca. A.D. 628, and the Suryasiddhanta, ca. sixth century A. D.3 The Laghumanasam is a 
type of text known as a karana, which is a short work giving simplified and approximate 
rules for computing astronomical items. Among the rules that Munjala gives is a 
correction to the equation of center for the Moon in the form 
 
 cos sinr ψ η′−  
 
where L Aψ ′= −  is the elongation of the mean Sun from the lunar apsidal line, and 

L Lη ′= −  is the elongation of the mean Moon from the mean Sun. Yallaya, in a 
commentary to the Laghumanasam written in A.D. 1428, claims that this correction was 
given earlier by Vatesvara (ca. A.D. 904), but that earlier text has not been found and the 
claim cannot be checked. What is most interesting is that this correction is closely related 
to the second inequality of lunar motion known to Ptolemy, and known today as evection. 
The first two terms in modern lunar theory are conventionally written as  
 

2 sin sin(2 )e α ε η− − −α ,  
 
with 2e = 6.29, ε = 1.27. The first term is the elliptic inequality and the second is the 
evection. Noting that α η ψ= +  and 2η – α = α – 2ψ, we have the identity  
 

sin(2 ) sin 2cos sinη α α ψ− − = − η  



 
and so the two modern terms can be rewritten as 
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exactly the same form found in the Laghumanasam. Munjala’s numerical values imply a 
maximum value of about 2;29° for the second term in the final line, compared say to 
Ptolemy’s 2;40° and the modern 2;33°.  The range of error for Munjala’s model is 
noticeably better than the error range for the full Almagest model (see Figures 2 and 3).4

 
Munjala’s expression is interesting on at least two other counts. First, unlike the modern 
theoretical expression, in which the evection term sin(2 )η α− − does not vanish at 
syzygy, Munjala’s expression neatly isolates from the evection the part that contributes 
only away from syzygy. Second, the empirical lunar anomaly that remains after 
accounting for the principal term sinr α−  can be written as 
 
 ( sin )L rλ α− − −  
 
where λ is the lunar longitude, and this can be determined by a series of measurements of 
λ (or, in our case, calculations using modern theory), and is the empirical target that needs 
explanation by changing the simple lunar model to something more complicated. Of the 
three possible pair-wise combinations of the variables α, η, and ψ, Munjala’s term is 
expressed in terms of the pair (η,ψ) that happens to give the simplest empirical 
representation of the lunar anomaly after accounting for the first anomaly (see Figures 4-
6). Whether the person responsible for the theory was aware of any of this, and the extent 
to which it played any role in the development of the theory, is, of course, impossible to 
determine based on the scant information we have. 
 
No ancient Indian astronomy text gives a geometrical figure of any model or discusses 
the derivation of any model. So while it could be the case that Munjala’s theoretical 
expression is derived from some Greek geometrical model of which we are already 
aware, such as the crank model given in the Almagest, it seems just as likely, if not more 
so, that Munjala’s expression is in fact an exact consequence of a simple underlying 
geometrical model, which may or may not have even been known to Munjala (or 
Vatesvara), recalling that under the Pingree – van der Waerden Hypothesis, the Indian 
texts summarize centuries old traditions inherited from the Greeks.5 Without further 
information we cannot say whether the model was developed in India or in some earlier, 
and unknown to us, Greco-Roman tradition. 
 
If the Laghumanasam expression was derived as an exact consequence of some 
underlying geometrical model, then the model required is straightforward to infer. We 
start with a concentric equant of eccentricity 2e and imagine that the equant point 



oscillates on a small epicycle of radius ε centered on the mean equant position (see Figure 
7). The angle between the rotating equant point and the mean lunar apsidal line is 
assumed to be 2ψ, so the period of rotation is about seven months. The effect of this 
model is that the equant eccentricity ρ oscillates between 2e ε−  and 2e ε+ , and the true 
lunar apsidal line oscillates about the mean apsidal direction by an angle δ.6  Thus at any 
instant the model is a concentric equant with oscillating eccentricity and apsidal line,7 so 
  
 sin sin( )q ρ α δ= − −  
where 
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and so we have exact analytic correspondence between the geometrical model and 
Munjala’s expression.8  
 
An equivalent model can also be developed by letting the small epicycle rotate through 
an angle 2η measured from the perigee of the epicycle instead of 2ψ measured from the 
apogee (see Figure 8). In this case δ is positive for  and negative for , 
and we get 
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matching exactly the result from Figure 7. Therefore the models are equivalent, even 
though the small epicycle rotates in about seven months in Figure 7 and in about 15 days 
in Figure 8. Note that the exact equivalence of the two versions depends directly on the 
fact that for the concentric equant the Earth is always the same distance from the Moon. 
It is possible, of course, that some more complicated model could give the same 
expression, but it seems very unlikely that any simpler model could do so. 
 



The equivalence of the two models, in spite of the different rotation speeds, can also be 

heorem. Let EFG be an isosceles triangle, with EF = EG. From the apex E drop a line to 

understood from a simple geometrical analysis. First we need a preliminary result and a 
simple corollary (see Figure 9): 
 
T
an arbitrary point P on the base FG, and extend the line above E to point A. Let angle 
AEF = β, angle PEG = γ, and angle EPF = α. Then 2α β γ= + . 
 
Proof: since the triangle is isosceles, angle EFP = angle EGP. Then application of the fact 

orollary. Let angle β be measured counterclockwise from EA, and let angle γ be 
e so 

that the sum of the internal angles of a triangle is 180° to triangles EFP and EGP 
establishes the result. 
 
C
measured counterclockwise from EP. Let angles β and γ change uniformly with tim
that 0 tββ β ω= +  and 0 tγγ γ ω= + . Then angle EPF = α, measured counterclockwise 
from ith time, and with speed 2 PE, also changes uniformly w α β γω ω ω= + .  
 
Now consider a large deferent with center at O and radius OM = R (see Figure 10). At a 

 distance 2e from O place a smaller circle with center E and radius EF = EG = ε. Let angle
AEF = 2ψ and angle PEG = 2η, and let ψ and η increase uniformly with time at speeds ωψ 
and ωη. Then triangle EFG is isosceles and we may apply the Theorem and Corollary. It 
follows that α η ψ= +  and the chord FG subtended by angle FEG always makes an angle
α with the ap  AP, and that α increases uniformly with time with speed ω

 
sidal line

 been 

he general model has (at least) two interesting special cases. First, if we let β = γ = α 

α =  ωψ 
+ ωη. Also, if we call OE the mean equant, in both length and direction, and OF and OG 
two of the true equants, also in both length and direction, then the equation of center q is 
the same for triangles MOF and MOG. Therefore the geometrical analysis establishes 
exactly the same equivalence established above using trigonometry. And since the 
construction is so simple, it seems extremely likely that the equivalence could have
known in antiquity, even at a date far earlier than Munjala’s A.D. 932. 
 
T
and β γ αω ω ω= =  then the two radii EF and EG will always point in opposite direction
and FEG will be a straight line which always makes an angle α with the apsidal line AP. 
Thus this special case is exactly the concentric equant used for the first anomaly alone, 
and we see that one way of understanding the full lunar model is as a generalization of 
the concentric equant to allow 

s 

β γ≠ while keeping 2β γ α+ = . Whether this was part o
the path to discovery of the second lunar anomaly is, of course, impossible to say without 
further information. 
 

f 

 second special case has β = 0 and , and γ = 2α and 2γ αω ω=A 0βω = . Then the radius 
nd the s counterEF points toward A and stays fixed, a  radius EG rotate clockwise with 

speed 2ωα. This model is then very closely related to the planetary models of Ibn ash-
Shatir (see the discussion below). 
  



In the general case, with β γ≠ , the point where chord FG crosses the apsidal line AP 

ts. 

ut rather 

oth versions of the model can be changed from concentric deferent to eccentric 

oscillates up and down, and so we effectively have a pulsating eccentricity, and the 
pulsation is twice as fast as the motion in anomaly, just as we see in many Indian tex
Thus it could be that when the Indian texts speak of the varying lengths of the 
eccentricities, they are not saying that we should vary them in the calculation, b
simply reminding us that their effective lengths are changing. In reality, the Indian texts 
are so terse, and so generally devoid of explanation of any kind, that this could easily be 
the case. 
 
B
deferent, and then the equations of center would be given by 
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 eccentric deferent models the Earth-Moon distance is the denominator in these In

expressions and so is, of course, not a constant. Hence the equations of center qψ  and qη  
are not strictly equal, but the differences are small since, as shown above, the numerators 
are the same, and the differences in the denominators are proportional to the small 
quantity 2/rr R′ . The equivalent double-epicycle version of the eccentric deferent i
course, the basis of Ibn ash-Shatir’s lunar model,

s, of 
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 we put the center E of the small epicycle at some point north of the center of the 

ve. It 

dii that 

close 
 the 

 

lthough Ptolemy does not discuss the Almagest lunar model in terms of an oscillating 

9 so it is a variant of the Laghumanasam
model with (a) exchange of the concentric equant with an eccentre or equivalent large 
epicycle, (b) counting the angles as in Figure 8, and (c) putting the small epicycle in 
various places in the figure. One such variant – putting the small epicycle on the tip o
large epicycle – was adopted by Copernicus.10 The earliest known Arabic lunar (or 
planetary) models date to about A.D. 1240, however, so we are not in position to say
whether the Laghumanasam model was somehow transmitted to the Arabic astronomers 
or whether they developed it independently. 
 
If
deferent, and the Earth at some point south of the center, then the various Arabic 
planetary models are very closely related to the second special case mentioned abo
is well known, of course, that such models are very close approximations to the 
Ptolemaic equant.11  Also, since these models have eccentricities and epicycle ra
are oscillating in both length and direction, they are very similar to the various 
intermediate steps of the algorithms of Indian planetary models, which also are 
approximations to the Ptolemaic equant.12 Thus there could be some relation between
Indian models and the double epicycle approximation to the equant – that is, it seems 
possible that the Indian algorithms are approximations to the equant via some 
combination of double epicycle implementations of both planetary anomalies. 
 
A
eccentricity and apsidal line, the final analytic expression for his crank mechanism plus 
epicycle model with a shifted apsidal line can be written in the form13
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rom the discussion above we know that such a model can always be transformed into an 

he eccentric version of the Laghumanasam model has an interesting subsequent 
 angle 

cle 
nd 

e model 

 the 

o we see that the physical idea of an oscillating lunar eccentricity and apsidal line was 

cks. 

 set of illustrative and interactive animations of the models described above may be 

F
equivalent eccentric model, and in this case the apsidal direction, but not the eccentricity, 
oscillates around a mean value. The relation of the Almagest model to the 
Laghumanasam model, if any, is thus obscure.  
 
T
history.14 Essentially the same model, with the small epicycle rotating through the
2ψ, was used by Kepler at an intermediate stage of his lunar research, and then 
abandoned. The model was later used by Philip Lansbergen with the small epicy
rotating through the angle 2η, and so was essentially the lunar model of ash-Shatir (a
hence Copernicus) transformed so that the small epicycle was at the center of the 
eccentric deferent. Jeremiah Horrocks, post-Kepler but pre-Newton, again used th
in the form of Kepler, with the small epicycle rotating through the angle 2ψ, the only 
significant difference being that for Horrocks the deferent was a Keplerian ellipse and
elliptic inequality respected the equal area in equal time law.  
 
S
certainly known as early as medieval India and perhaps back to Greco-Roman times. It 
was used and perhaps re-discovered by Arabic astronomers, by Copernicus, and by 
various post-Copernican astronomers, including Kepler, van Lansbergen, and Horro
And finally, it was the crucial clue Newton borrowed from Horrocks to finally formulate 
his own lunar model.15  
 
A
found online at www.scs.fsu.edu/~dduke/models.htm.16 Look for the link to lunar 
models. 

http://www.scs.fsu.edu/%7Edduke/models.htm
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Figure 1. In the concentric equant model the Earth is at the center O of a deferent of 
radius R and the moon is at M on the deferent. The motion of M is uniform as seen from 
the equant point E, which is a distance r from O, so angle AEM = α increases uniformly 
with time. Angle OME = q is the equation of center, and is given by sin sinq r α= − . 



Figure 2. The Indian lunar model error range for the simple model with one anomaly 
(outer grey area) and the Munjala model (inner black area). 

 
 
Figure 3. The Almagest lunar model error range for the simple model with one anomaly 
(outer grey area) and the full model with the crank mechanism and the shifted apogee 
(inner black area). 
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Figure 6.
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Figure 7. Moon at M, Earth at center O, mean equant at E, OE = 2e, true equant at E´, 

OE´ = ρ. Radius of small epicycle is ε and rotates counterclockwise. 
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Figure 8. Moon at M, Earth at center O, mean equant at E, OE = 2e, true equant at E´, 

OE´ = ρ. Radius of small epicycle is ε and rotates counterclockwise. 
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Figure 9.  
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Figure 10. 
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