
   

The Ancient Values of the Planetary Parameters of Venus 
and Mercury 

 
Dennis W Duke, Florida State University 

 
 
 

In chapters IX-XI of the Almagest1 Ptolemy produces a rather small set of observations 

for each of the five planets, most of which he specifically claims to have made himself, 

and proceeds to systematically use those observations to derive each of the parameters of 

his final planetary models: a rather complicated crank mechanism for Mercury, and the 

equant model for Venus, Mars, Jupiter and Saturn. Wilson, Newton, and Swerdlow have 

thoroughly analyzed Ptolemy’s presentations.2 Each concludes that Ptolemy simply did 

not do what he wrote that he did in his Almagest presentations on Venus and Mercury, 

and Newton claimed the same for the outer planets Mars, Jupiter and Saturn. Instead, 

they show that Ptolemy very likely already knew the values of the parameters of his 

model and adjusted his ‘observations’ to make his ‘derivations’ of those parameters 

appear direct and simple. 

 

So if Ptolemy inherited the values of the parameters, or if he derived them himself from 

some prior analysis that he chose not to leave us, then the question is: how would one use 

ancient data to derive fairly accurate values for these parameters? As many previous 

commentators have assumed, the most plausible scenario is that the ancients had 

somehow managed to assemble a fairly substantial set of observations, perhaps over a 

fairly long interval of years. So one way to try and understand the question is to assemble 

for ourselves a set of observations that could plausibly have been available to an ancient 

astronomer, and then try and analyze those observations in the context of Greek 

geometrical models to see what parameters emerge. 
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The principal observations used for the inner planets are greatest elongations. Ptolemy 

defined the elongation of an inner planet as the difference in longitude of the planet and 

the mean Sun, and we shall assume that his predecessors did likewise. Since the longitude 

of the mean Sun is obtainable only in the context of a theory of the Sun’s motion, we 

know that insofar as elongations are used to fix the parameters of planetary models, the 

existence of a reasonably good model of the Sun is then a prerequisite. Now 

measurements of planetary longitudes were generally made relative to the longitudes of 

reference stars, and the tropical longitudes of reference stars must be made with respect 

to the Sun (and need not coincide with the observation of the planet), so any error in the 

solar model will be directly transmitted as an error in the planet’s tropical longitude. Thus 

the elongations will be somewhat immune to the simplest errors in the solar theory, such 

as a misplaced equinox. If, however, the errors in the solar theory grow with time (as, e.g. 

in Hipparchus’ solar theory), then pairs of morning and evening elongations at the same 

longitude of the mean Sun will incur errors, and these errors will be most apparent when 

we compute the difference of the absolute values of the elongations. 

 

In order to generate samples of historical data I use the planetary models of Bretagnon 

and Simon,3 which yield geocentric longitudes and latitudes for the Sun and the planets 

as far back as 4000 BC, and to far greater accuracy than needed for this investigation. 

Figures 1 and 2 show the evening (i.e. positive) and morning (i.e. negative) elongations 

of Venus as a function of the Sun’s mean longitude using positions computed at five day 

intervals over 400 BC – 150 BC. The outer envelopes of values thus determine the 

morning and evening greatest elongations  as a function of solar mean longitude.4 Figure 

3 shows the sum of the absolute values of greatest morning and evening elongations as a 

function of solar mean longitude, while Figure 4 shows the algebraic sum of the greatest 

evening and morning elongations, i.e. the difference of their magnitudes. Figures 5-8 

show the corresponding results for Mercury. For comparison and later reference, the 
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figures also include the corresponding result from using the Almagest models of Venus, 

Mercury and the mean Sun to generate planetary positions. And although I am using 

charts throughout this paper, the ancient analyst was most likely using tables of numbers. 

We do know, though, that the analysts were very proficient at using tables. They could 

not only interpolate, but also find local maxima, minima, and rates of change of their 

tabulated functions. Presumably all of the analysis I do with graphs below was done just 

as well with tables in ancient times. 

 

The set of data so collected is clearly of far greater quality than we can reasonably expect 

for an ancient data collection, and the issues associated with that point will be addressed 

below. But for now let us assume that such a data collection is available and see how it 

might be analyzed in the context of Greek geometrical models. This will show us at least 

what is ideally possible, and hence provide an initial frame of reference for the later 

analysis of more realistic sets of observations. 

 

Of the possible Greek geometrical models we shall consider three. First is the simple 

model known at least as far back as Apollonius: a concentric deferent of radius R with an 

epicycle of radius r. Second is an intermediate model which the Almagest refers to only 

indirectly,5 but which we can be fairly sure was at least considered at some point: an 

eccentric deferent with radius R and eccentricity e, and an epicycle of radius r. And third 

is the Almagest model (excepting Mercury): an eccentric deferent with radius R and 

eccentricity e, and an epicycle of radius r which moves uniformly about the equant, a 

point which lies on the apsidal line a distance e´ from the Earth. In all three models the 

planet revolves uniformly around the epicycle with a period in anomaly, and the center of 

the epicycle revolves around the deferent with the period of the mean Sun. In the first two 

models the center of uniform motion is the center of the deferent, while in the third model 

the center of uniform motion is the equant. 

Dennis Duke Page 3 9/5/2002 



   

 

The parameters of the models are therefore: (1) the mean motions in longitude and in 

anomaly, (2) the direction of the apsidal line, and its change in direction with time, (3) 

the radius r of the epicycle, (4) the eccentricity e of the deferent, (5) the distance e´ 

between the Earth and the center of uniform motion (the equant), and (6) the values of 

mean longitude, anomaly, and apogee at some initial time. In addition, for the inner 

planets Ptolemy makes the assumption that the direction of the line from the center of 

uniform motion to the epicycle center is parallel to the line from the Earth to the mean 

Sun. We do not know whether astronomers earlier than Ptolemy assumed this, but in the 

following we shall assume that they did. 

 

Now for all five planets, various period relations were very well known and clearly could 

have been used to derive the mean motions. In addition, a single observation of longitude 

at a known time t is sufficient to fix the initial values once the other parameters are 

decided. So for all five planets the principal problem is to find values for the direction of 

the apsidal line, the epicycle radius r, the deferent eccentricity e, and the distance e´ of 

the equant from the Earth. 

 

For Venus and Mercury, the most obvious quality we notice is that the greatest 

elongations are not constant as the planet traverses the zodiac. Presumably this was 

realized very early, and so  the ancient astronomers would have known that the simplest 

Apollonius model with a simple epicycle on a concentric deferent could not work. Now 

for a given distance R between observer and epicycle center, and a given radius r of the 

epicycle, the greatest elongation η results when the line of sight from Earth to the planet 

is tangent to the epicycle, so that r is determined by the simple relation sinr R η= . Since 

η is observed to be not constant, then either the epicycle radius r or the distance R to the 

epicycle center, or both, must be varying. The ancient Greek analysts apparently always 
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chose to keep the epicycle radius r fixed. It is quite plausible, however, that they realized 

that they could estimate the epicycle radius by simply observing the average greatest 

elongation, which will occur when the epicycle center is its average distance from the 

observer. Using the conventional norm  and the data shown in Figures 1 and 2, 

which yield an average elongation of about 46.2°, the implied epicycle radius is 43;20. 

When rounded, this agrees exactly with the value attributed by Pliny to Timaeus of 46°, 

which implies an epicycle radius of 43;10, the value Ptolemy uses in the Almagest. The 

average value of the elongations for Mercury, shown in Figures 5 and 6, is about 22.3°, 

which also rounds to the value of 22° that Pliny attributes to Cedenas and Sosigenes, and 

which leads to r = 22;28,35 ≈ 22;30, and again the value Ptolemy uses. Thus the epicycle 

radii for the inner planets follow simply from knowledge of the average greatest 

elongations, and since they were apparently known long before Ptolemy’s time, we might 

have some confidence that enough greatest elongations were observed to provide 

adequate estimates of the average. 

60R =

 

The next task is to determine the direction of the apsidal line. One idea is that apogee is 

the direction in which the sum of greatest evening and morning (absolute) elongations is 

minimum, and hence the epicycle is farthest from the observer, while perigee is the 

direction in which the sum is largest. This method is also the least sensitive to any error 

in the computed position of the mean Sun. Ptolemy alludes to this method in Almagest 

X.2 when he says “Furthermore, it has also become plain to us that the eccentre of Venus 

carrying the epicycle is fixed, since nowhere on the ecliptic do we find the sum of the 

greatest elongations from the mean [Sun] on both sides to be less than the sum of both in 

Taurus, or less than the sum of both in Scorpius.” Thus Figure 3 shows that apogee for 

Venus is around 52° and that perigee is about 180° away, around 232°. It might have also 

occurred to the ancient analyst to ask for the direction in which the morning and evening 

elongations sum (algebraically) to zero. Figure 4 shows that this occurs at about 60° and 
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236° for the real data. The positions for apogee and perigee that result from these two 

methods are not equal due to various technical reasons: the true orbits are elliptical, the 

orbits do not lie in a common plane, and the true mean Sun does not lie on the line 

between the center of Earth’s orbit and the center of Venus’ orbit.6 It is also clear from 

Figures 3 and 4 that the symmetry method that Ptolemy claimed to be using to find the 

direction of the apsidal line should have produced a result much closer to 60° than to 52°, 

whereas he in fact produced a result, adjusting for his movement of the apsidal line, close 

to 52°. This suggests that he was using a symmetry method with data adjusted to give a 

result that he had inherited, and that result was fairly accurately derived from more 

accurate data using the sums method. 

 

Consideration of the sums of greatest elongations for Mercury (see Figure 7) shows that 

the direction of the apogee for the real data is at about 220° and perigee is about 180° 

away at 40°. On the other hand, the difference method (see Figure 8) gives an apogee for 

Mercury at about 205° and a perigee at about 28°. The Almagest model data give an 

apogee at just over 180° and, by construction, double perigees about 120° away from 

apogee.  

 

Finally, we look at the determination of the eccentricity and the position of the equant.  

Let’s begin by thinking in terms of the simplest model that might work, the intermediate 

model which has an eccentric-deferent and an epicycle. In this model the center of the 

deferent and the center of uniform motion are the same, and so e . The catch, 

however, is that there is one way to estimate e and another way to estimate e´, and as we 

shall shortly see, these two different methods give different estimates. 

e′=

 

First we estimate e´. If the mean Sun is at longitude Sλ and the longitude of the apogee is 

at λA, then the equant distance e´ is given by 
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where c ( ) / 2M Eη η= −  and ASα λ λ= − . This method is only useful, however, when the 

mean Sun is well away from apogee or perigee, and when the two elongations are close 

enough in time that the apogees of the observations are not significantly different. If we 

analyze the real data using such a model we can estimate e´ when the longitude of the 

mean Sun is near quadrant. The resulting estimated value of e´ is about 1.85, assuming 

.  60R =

 

On the other hand, the ancient analyst would estimate e, the eccentricity of the deferent, 

using elongations as close as possible to the apsidal line. In fact, if ηP and ηA are 

elongations at perigee and apogee, respectively (and evening or morning doesn’t matter 

by symmetry, so one could also just average the morning and evening elongations near 

apogee and perigee), then the eccentricity e is given by 

 

 sin sin
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e
R

η η
η η
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Near the apogee of the real data the eccentricity e is about 0.9 (assuming R =60). What is 

particularly clear is that the ratio e´/e is close to 2 for the real data. Therefore these two 

relatively simple analyses send a clear signal that for Venus the center of the deferent is 

closer to the Earth than the center of uniform motion, in contradiction to the assumption 

of the intermediate model. It is plausible, then, that it was the need to reconcile this 

contradiction that led to the creation of the equant model that we find for Venus in the 

Almagest. It is certainly the case that for Venus, and only for Venus, Ptolemy presents an 

analysis that closely parallels the above to explain the problem that needs to be resolved. 
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Repeating the equant determination using Mercury data leads to e  and , 

implying that the center of uniform motion is closer to the Earth than is the center of the 

deferent, and thus opposite to the situation with Venus. This is an unavoidable 

consequence of the fact that the center of Mercury’s orbit is farther from the Sun than the 

center of Earth’s orbit.

3.25′ = 4.6e =

7 We can only surmise that perhaps the difficulty of reconciling the 

different sizes of the eccentricity and the equant led to the creation of a special model for 

Mercury. Perhaps it is also possible that Ptolemy (or whoever invented the model) could 

not find a way to make the crank mechanism account for the variation in greatest 

elongation without also introducing a double perigee, but in absence of more detailed 

analysis we can say very little with certainty. 

 

Each of these determinations of the equant and the eccentricity involves getting a small 

number from the difference of two experimentally measured larger numbers, and hence 

all the estimates unavoidably have substantial relative errors. Thus it is not surprising that 

the values used in the Almagest, whoever they might originate from, differ at the 15-20% 

level from our more exact estimates which use accurate data. 

 

Overall then we see that given an adequate (and some might say extravagant) base of 

historical data, it is plausible that straightforward analysis using techniques that we 

expect were accessible to ancient astronomers leads to just the results for Venus and 

Mercury that we find in the Almagest. However, all the above is based on accurate values 

of longitudes sampled at 5 day intervals over a period of 250  years. In reality, of course, 

the measurements would not have been so accurate, nor the sampling nearly so regular, 

nor the interval necessarily so long. In addition, especially for Mercury, one should 

account for the fact that the planets are not always visible. 
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For Venus the primary issue is the length of the time interval over which observations 

were available. To take an extreme example, let us suppose that Ptolemy only had data 

over the time period explicitly mentioned in the Almagest, 127-141 AD. The available 

data8 are shown in Figures 9 and 10, and reflect the periodicity of Venus’ orbit. 

Estimating the direction of the line of apsides from Figure 10 alone would be hazardous 

at best, and even if you somehow knew the direction of apogee there are not enough 

observations near apogee, perigee or quadrant to make a good estimate of the eccentricity 

or the equant lengths. In fact, unless one includes observations prior to about 50 AD one 

could not know that the maximum sum of elongations was actually in Scorpio, as 

Ptolemy tells us in Almagest X.2.9 

 

How many years of Venus observations are enough to get useful results? Figure 11 shows 

the results of collecting data for 100 years. Since the general trend of the curve is at least 

partially defined now at a number of points, one can get an impression of the longitudes 

of the maximum and minimum sums, and by interpolation estimate any needed values. 

So it appears that if the ancient analyst had access to about a century’s worth of data, he 

would be able to use that data as we have discussed to estimate the needed parameters in 

the intermediate model. More data might have been available, but the fact is we have no 

direct evidence that such data series ever existed. What we are showing in this paper is 

that if the data existed, then it is plausible that the ancient analyst could use the data to 

estimate values of the parameters of geometrical models. 

 

For Mercury the primary issue is not so much the length of the time interval of the 

observations as the difficulty of observing Mercury at different times of the year. To once 

again take an extreme example, we use the time interval 127-141 AD. In order to make 

sure we record Mercury only when it is visible, we now generate longitudes every 6 

minutes. However, we also compute the altitudes of the Sun and Mercury assuming we 
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are at Alexandria, and we record the observation only if the Sun is 5° or more below the 

horizon and if Mercury is 5° or more above the horizon. The results are shown in Figures 

12 and 13. It is sometimes said10 that the shallow angle of the ecliptic during Spring 

mornings and Fall evenings would make the observations of Mercury difficult if not 

impossible. In the context of Ptolemy’s Almagest analysis of Mercury, there are two 

needed observations that are conspicuously missing: the morning of 131 Apr 4 and the 

evening of 138 Oct 4. Precise calculation shows, however, that according to the visibility 

conditions being used here,11 Mercury was visible on the first date for about 16 minutes 

and on the second date for about 8 minutes. And although these intervals of opportunity 

are narrow, they existed for about a week on both sides of the target date. However, even 

allowing for considerable further degradation of the data, and omitting the Spring 

morning and Fall evening elongations, it is clear that adequate data might well have been 

available to allow a determination of model parameters as discussed above. Furthermore, 

the idea that the difficulty in observing Mercury would lead to relatively fewer 

observations of Mercury is not supported by the historical records, since, as pointed out 

by Swerdlow,12 the Astronomical Diaries13 contain nearly three times as many 

observations of Mercury as of Jupiter and Saturn, and LBAT 1377,14 a text devoted to 

Mercury, contains more observations than all the surviving Diaries.  

 

For the outer planets the observation of choice is the opposition, at which the planet, the 

Earth and the mean Sun are aligned (with the Earth in the middle). In the Almagest 

Ptolemy uses an elegant geometrical analysis using three oppositions to determine the 

direction of the apsidal line and the size of the equant. Evans, however, has suggested a 

much simpler method that uses a time history of oppositions to accomplish the same 

goal.15 To locate the apogee of the deferent, one considers the average distance between 

oppositions as a function of the longitude of the oppositions. This function is minimum at 

the longitude of the apogee. Examples for Mars, Jupiter and Saturn are shown in Figure 
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14 using oppositions that occurred over the (arbitrary) interval 250 BC – 150 BC. Then 

by picking an opposition as near as possible to apogee and a second opposition at some 

other longitude, one can compute in the context of the intermediate model the effective 

size of the equant (or eccentricity, they are equal in the intermediate model) as seen from 

different longitudes of the (second) opposition using the formula 

  / sin / sin ,e R c a=

where a , , and . In these equations ω0λ λ= − 0(t t tα ω= − ) ac α= − t is the mean motion 

in longitude, the opposition at apogee has longitude λ0 at time t0, while the second 

opposition has longitude λ at time t. Assuming that the distance R = 60 is constant, one 

finds for all three outer planets an effective equant distance that decreases as you move 

away from apogee, as shown in Figure 15. Or inversely, if one chooses to keep the 

effective equant distance constant, then it must be that the distance R is increasing as the 

planet moves away from apogee. This is, of course, precisely what happens to the 

distance between the center of uniform motion and the center of the epicycle in the 

Almagest equant model.  

 

Evans has also shown another approach to motivating the Almagest equant model that 

uses the varying width of opposition loops and their unequal spacing in longitude.16 It is 

certainly possible that either method, or perhaps both, provided the motivating factors 

that first exposed the inadequacy of the intermediate model, and then suggested a 

solution. In any event, though, the fact that the anciently attested values for all five 

planets agree so well with the results from modern calculation shows that the ancient 

observations, however they were collected and analyzed, must have been adequate for the 

purpose. 

 

In summary, the various analyses show simple and accessible methods whereby ancient 

astronomers might well have used time histories of the longitudes of planets, combined 
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with a solar model and the longitudes of a few bright stars near the ecliptic, to estimate 

the parameters of their models. The primary technical supplement to the geometrical 

models might well have been extensive sets of tables, just as Ptolemy himself eventually 

uses in the Almagest. Coupled with the nature of Ptolemy’s own presentations in the 

Almagest, as discussed by Wilson, Newton, and Swerdlow, these results therefore suggest 

that such practice predates the analyses Ptolemy left us in the Almagest. 
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  Figure 1. 
 

Figure 2. 
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Figure 3. 
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Figure 4. 
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Evening Observations of Mercury 400 BC - 150 BC
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Figure 5. 
 

Morning Observations of Mercury 400 BC - 150 BC
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Figure 6. 
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Figure 7. 
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Observations of Venus 127-141 AD
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Figure 9. 
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Figure 10. 
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Figure 11.
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igure 14. 

Sum of Greatest Elongations of Mercury 127-141 AD
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Figure 13. 
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Figure 15. 
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