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Abstract
Recent increases in computing power have changed the way we are able to solve PDEs. One of the more popular ways to computationally solve differential
equations is the finite element method (FEM). The objective of this project is to solve the 1-D advection-diffusion equation using this method in C++.
For flows that are diffusion-dominated, the standard FEM approach can be used. However, advection-dominated flows result in physically unrealistic
solutions. Therefore, we have to consider methods which preserve positivity, such as flux corrected transport. We will present numerical results for
diffusion-dominated and purely advection-driven flow.

Advection-Diffusion Equation
The advection-diffusion equation is given by

ut(x, t) − νuxx(x, t) + aux(x, t) = f(x, t)

u(x, 0) = u0(x)
(1)

where ν and a are the diffusion and advection
constants, respectively, with Dirichlet boundary
conditions.

For the fully discrete FEM we use a weak formu-
lation where a backward Euler approximation is
used in time.∫ 1

0

u(x, t) − u(x, t− ∆t)

∆t
vdx+ ν

∫ 1

0

uxvxdx

+a

∫ 1

0

uxvdx =

∫ 1

0

fvdx

(2)

Using continuous piecewise linear polynomials
to discretize our weak problem, we first show
that we can accurately approximate the solution
when the flow is diffusion-dominated.
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Figure 1: Exact solution and approximate solu-
tion of a diffusion-dominated flow with t = 0.5,
∆x = 1

8 , a = 0.002, and ν = 1

The following is a table of L2 errors generated
from Fig 1.

∆x L2-error rate
1
4 0.0305977 -
1
8 0.00855629 1.83837
1
16 0.00225692 1.92263
1
32 0.000589784 1.9361

Using this standard FEM scheme to solve this
equation results in significant inaccuracies if the
flow is advection-dominated, as displayed in the
figure below.
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Figure 2: Exact solution and approximate so-
lution of an advection-dominated flow with t =
0.5, ∆x = 1

8 , a = 1, and ν = 0.2

FEM Lax-Wendroff
To achieve a better approximation to the
advection-diffusion equation, we first examine
only the advection equation and try to obtain
a scheme which accurately approximates its
solution. Then we will incorporate this into our
advection-diffusion scheme.

We use the 2nd order Lax-Wendroff scheme to
approximate ut so we can arrive at the weak
form of the FEM Lax-Wendroff (FEM-LW) ap-
proximation. Let utt(x, t) = −a2uxx(x, t) to get∫ 1

0

u(x, t+ ∆t) − u(x, t)

∆t
vdx+ a

∫ 1

0

uxvdx

+
∆t

2
a2

∫ 1

0

uxvxdx = 0

(3)

The figure below demonstrates the numerical
overshoots and undershoots in the FEM-LW ap-
proximation.
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Figure 3: Exact solution and FEM-LW approxi-
mate solution of a square wave with t = 0.5 and
∆x = 0.01

FEM Backward Euler
Similarly, we approximated ut in the advection
equation (3) above using the Backward Euler
method. Thus, the finite element weak form is∫ 1

0

u(x, t) − u(x, t− ∆t)

∆t
vdx+ a

∫ 1

0

uxvdx = 0

(4)
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Figure 4: Exact solution and FEM-BE approxi-
mate solution of a square wave with t = 0.5 and
∆x = 0.01
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FEM-FCT
FEM-FCT, or FEM Flux-Corrected Transport
is a method to correct the overshoots and un-
dershoots apparent in other methods such as
FEM-LW and FEM-BE. To do this, a lower-
order scheme that preserves positivity will be
"corrected" to achieve higher order accuracy.
FEM-LW (3), when implemented, results in a
matrix system to solve which can be written as

M∆uH = ∆tKHun − (∆t)2

2
a2Sun (5)

where un is the solution at the previous time
step, and ∆uH = un+1 − un. We consider the
lower order scheme

ML∆uL = ∆tKLun

where ML is the lumped mass matrix, and KL

is a modification to KH such that all negative
off-diagonal entries are eliminated.
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Figure 5: Exact solution and lower order ap-
proximate solution of a square wave with t = 0.5
and ∆x = 0.01

To recover accuracy lost by the dampening effect
of this lower order solution, we add back the
higher order terms.

M∆uH = ∆tKLun − (M −ML)∆uH

+ ∆t(KH −KL)un − (∆t)2

2
Sun

(6)

which can be written as a difference in fluxes
across elements

(∆uH)i = (∆uL)i +
1

ML
i

∑
j 6=i

aijfij
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Figure 6: FCT approximate solution of a square
wave with t = 0.5 and ∆x = 0.01

Future Work
To finish, we will implement the diffusion term
in the FEM-FCT routine.


