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Abstract

Recent increases in computing power have changed the way we are able to solve PD]

s. One of the more popular ways to computationally solve differential

equations is the finite element method (FEM). The objective of this project is to solve the 1-D advection-diffusion equation using this method in C++.

For flows that are diffusion-dominated, the standard F

M approach can be used. However, advection-dominated flows result in physically unrealistic

solutions. Therefore, we have to consider methods which preserve positivity, such as flux corrected transport. We will present numerical results for
diffusion-dominated and purely advection-driven flow.

Advection-Diffusion Equation

The advection-diffusion equation is given by

ur(x,t) — vz (x,t) + aug(z,t) = f(a,t)

1

u(z,0) = ug(x) (1)
where v and a are the diffusion and advection
constants, respectively, with Dirichlet boundary

conditions.

For the fully discrete FEM we use a weak formu-
lation where a backward Euler approximation is
used in time.
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Using continuous piecewise linear polynomials
to discretize our weak problem, we first show
that we can accurately approximate the solution
when the flow is diffusion-dominated.

Figure 1: Exact solution and approximate solu-
tion of a diffusion-dominated flow with ¢ = 0.5,

Ax = %, a = 0.002, and v =1

The following is a table of Ly errors generated
from Fig 1.

Az | Lo-error rate

© | 0.0305977 | -

s | 0.00855629 | 1.83837
= | 0.00225692 | 1.92263
=5 | 0.000589784 | 1.9361

Using this standard FEM scheme to solve this
equation results in significant inaccuracies if the
flow is advection-dominated, as displayed in the
figure below.

Figure 2: Exact solution and approximate so-

lution of an advection-dominated flow with ¢t =

0.5, Az = %, a=1,and v = 0.2

FEM Lax-Wendroft

To achieve a better approximation to the
advection-diffusion equation, we first examine
only the advection equation and try to obtain
a scheme which accurately approximates its
solution. Then we will incorporate this into our
advection-diffusion scheme.

We use the 2nd order Lax-Wendroff scheme to
approximate u; so we can arrive at the weak

form of the FEM Lax-Wendroft (FEM-LW) ap-
proximation. Let us(w,t) = —a*uz.(x,t) to get
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The figure below demonstrates the numerical
overshoots and undershoots in the FEM-LW ap-
proximation.

Figure 3: Exact solution and FEM-LW approxi-

mate solution of a square wave with ¢t = 0.5 and
Ax = 0.01

FEM Backward Euler

Similarly, we approximated u; in the advection
equation (3) above using the Backward Euler
method. Thus, the finite element weak form is

1
)vdx + a/ u,vdxr = 0
0
(4)

Figure 4: Exact solution and FEM-BE approxi-

mate solution of a square wave with ¢t = 0.5 and
Ax = 0.01
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FEM-FCT

FEM-FCT, or FEM Flux-Corrected Transport

is a method to correct the overshoots and un-
dershoots apparent in other methods such as
FEM-LW and FEM-BE. To do this, a lower-
order scheme that preserves positivity will be
"corrected" to achieve higher order accuracy.

FEM-LW (3), when implemented, results in a
matrix system to solve which can be written as

2
MAu? = AtKHy" (Azt) a*Su™  (5)

where u"™ 1s the solution at the previous time
step, and Auf! = "t — u™. We consider the
lower order scheme

MEPAWY = AtK

where M’ is the lumped mass matrix, and K*
is a modification to K such that all negative
off-diagonal entries are eliminated.

Figure 5: Exact solution and lower order ap-

proximate solution of a square wave with ¢t = 0.5
and Ax = 0.01

To recover accuracy lost by the dampening effect
of this lower order solution, we add back the
higher order terms.

MAu"” = AtK*u™ — (M — M*)Au”

(A1) o (6)

+ At(K" — KMy

which can be written as a difference in fluxes
across elements
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Figure 6: FCT approximate solution of a square
wave with ¢ = 0.5 and Az = 0.01

Future Work

To finish, we will implement the diffusion term
in the FEM-FCT routine.




