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Penetrative Convection (cont) 

Where  FT  is the total flux, (constant throughout the 

domain in the absence of motion) and Ki is the 

thermal conductivity of layer i, g is the constant 

gravitational acceleration, and Cp is the specific heat 

at constant pressure. 

In the two layers that are stable against convection, 

the radiative gradient is held to be less than the 

adiabatic gradient, while in the unstable layer, the 

reverse is true.  

 

 

 

 

 

 

 

 

Figure 2: Profile of Radiative and Adiabatic gradients throughout the 

domain of the Hurlburt Penetrative Convection Problem. Note that our 

setup 

 

The initial conditions for the Hurlburt setup follow a 

series of piecewise polytropes to describe the 

temperature, density, and pressure profiles 

throughout the domain. The polytropes for 

temperature (T), density (ρ), and pressure (p) are 

given by 

 

 

 

 

 

 

 

Here z is the depth coordinate, mi is the polytropic 

index, taken to be 3 in the stable layers and one in 

the central unstable layer. Ti , ρi, and pi are constants 

set at the interfaces between layers in order to ensure 

the profiles of temperature, density, and pressure are 

continuous throughout the domain.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Initial distributions of density, temperature, and pressure in the 

Penetrative Convection setup.  
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Introduction 
In the numerical modeling of Core Collapse supernovae, 

various explosion mechanisms have been proposed to 

explain the morphology of system. In the initial stages of 

the supernova, the core of the progenitor begins to 

collapse until the matter within it is sufficiently dense to 

enter a degenerate state and becomes difficult to 

compress. This causes the collapsing core to bounce 

back, sending a shock wave propagating through the 

star. This initial bounce is too weak to drive the explosion 

however, leading to a variety of theories regarding how 

the shock is sufficiently strengthened to achieve the 

explosion, with the two most widely accepted being 

neutrino-driven convection and the standing accretion 

shock instability (SASI). In neutrino heating, the shock is 

powered by neutrinos emitted from the degenerate core  

and absorbed by material behind the shock . In this 

scenario, large scale fluid motion of material in the gain 

region, such as convection, is of particular interest, as it 

has critical implications on the dynamics of the 

explosion. In this work, we intend characterize the 

convection that arises in such scenarios, using the 

classic penetrative convection setup proposed by 

Hurlburt et al. (1986) 

 

 

 

 

 

 

 

 

 

 

 
Figure  1: Numerical Simulation of a core collapse supernova and forming 

proto-neutron star.  The explosion  is 1600 km across at this point.  

Flux Integration 
In order to characterize the behaviour of our penetrative 

convection study, several fluxes must be calculated at 

each time step; the convective, kinetic energy, 

radiative/conductive, and momentum fluxes, which are 

given below.  

 

 

 

 

 

 

 

 

 

 

 

The above prime terms indicate the value is taken to be 

the perturbation from the mean of all the cell values 

within the integration; that is to say 

 

 

 

 

Because the density, temperature and pressure are 

stratified vertically in our domain, we are interested in 

calculating these four fluxes in for each z value in our 

domain. Thus, for each row of cells on the z-axis of our 

discrete domain,  we sweep across the x-coordinates 

and determine the value of the integrand for each cell, 

multiply that by the cross sectional area of the differential 

used, and  divide that by the number of cells in each row.  

 

 

 

 

 

 

 
 

 

Figure 4: Time averaged flux values given oven depth from the Hurlburt 

problem. Note the penetration increased flux rates on both sides of the 

unstable layer interface.  
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Penetrative Convection 
Our numerical study draws heavily on the penetrative 

convection configuration proposed by Hurlburt et al. 

(1986). In such a setup, a convectively unstable central 

layer of material is sandwiched by two layers stable 

against convection. These stability criteria are 

determined by relationship between two values, the 

radiative gradient , βi,  of the layer i and the adiabatic 

gradient of the domain, βa, given by 

 

 

 

  

 

 

 

(4)                        / iTi KF

(5)                         / pa Cg

(6)                  )(
i

i
i

K

zz
TzT




(7)              
)(

)(

i
m

i

i
T

zT
z 








 

(8)            
)(

)(

1











i
m

i

i
T

zT
pzp

 







 d

p
vFC

'




 







 dvvF iK

'

2

2

1


  tdKFR

  dvpFP '

Numerical Model 

Our numerical model is built within the Proteus 

version of the Flash code, a multidimensional, 

multiphysics hydrodynamic code. As we study the 

large scale movement of material,  the most important 

equations for the dynamics of the system are the 

Euler equations.  
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Future Work 

With the hydrodynamic and flux integral potions of the 

project complete, our focus will soon turn to the 

implementation of the Hurlburt setup within a 

magnetohydrodynamics setup, in order to allow us to 

characterize the generation and evolution of magnetic 

fields within the convectively unstable layer.  
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