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* Distributions are dependent
on the dislocation density
and related to its correlation.

* 3D X-ray microscopy techniques now have the
capability to measure internal elastic fields and
dislocation density tensors with sub-micrometer
resolution, making possible direct comparison with
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* Understanding the statistics of internal elastic fields * Probability distribution of the dislocation density tensor in deformed Cu
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* Curvature contribution to the dislocation density tensor in deformed Cu
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Boundary Value Problem of Dislocations

Right: Curvature contribution
* The dislocation density tensor 1s

determined mainly by the curvature
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* Dislocation stress 1in a bounded crystal volume consists of two contributions:
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* Infinite-domain solution 1s obtained from non-singular analytic formula:
* Submicron (0.5 um) 3D X-Ray Microscopy Measurement of Rotation Distortions in deformed Cu
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* Image stress 1s the solution of a boundary value problem of dislocations:
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Pair correlation function of internal elastic fields: « Statistical analysis shows the internal elastic fields and dislocation density tensor are
distributed anisotropically, with zero mean value and strain-dependent fluctuations
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* The internal elastic fields exhibit long-range correlations that are related to the distribution
* First order probability density function of dislocation density tensor: and correlations within the underlying dislocation structure.
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* Higher order probability density functions and correlation functions can be formulated by homogeneity of deformation process.

following the same strategy. * The analysis has also shown that local curvature is the main contributor to the dislocation
density tensor in deformed metals.
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